Molecular heterostructure by fusing graphene nanoribbons of different lengths through a pentagon ring junction

نویسندگان

چکیده

Abstract Graphene nanoribbons (GNRs) have attracted great research interest because of their widely tunable and unique electronic properties. The required atomic precision GNRs can be realized via on-surface synthesis method. In this work, through a surface assisted reaction we longitudinally fused the pyrene-based graphene (pGNR) different lengths by pentagon ring junction, built molecular junction structure on Au (111). properties are studied scanning tunneling spectroscopy (STS) combined with tight binding (TB) calculations. shows weak coupling effect nanoribbons, which makes two connected analogous to type I semiconductor heterojunctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning the deposition of molecular graphene nanoribbons by surface functionalization.

We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.

متن کامل

Graphene/Si-nanowire heterostructure molecular sensors

Wafer-scale graphene/Si-nanowire (Si-NW) array heterostructures for molecular sensing have been fabricated by vertically contacting single-layer graphene with high-density Si NWs. Graphene is grown in large scale by chemical vapour deposition and Si NWs are vertically aligned by metal-assisted chemical etching of Si wafer. Graphene plays a key role in preventing tips of vertical Si NWs from bei...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study

When a solid object is stretched, in general, it shrinks transversely. However, the abnormal ones are auxetic, which exhibit lateral expansion, or negative Poisson ratio. While graphene is a paradigm 2D material, surprisingly, graphene converts from normal to auxetic at certain strains. Here, we show via molecular dynamics simulations that the normal-auxeticity mechanical phase transition only ...

متن کامل

Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study

Using non-equilibrium molecular dynamics, we show that asymmetrically defected graphene nanoribbons (GNR) are promising thermal rectifiers. The optimum conditions for thermal rectification (TR) include low temperature, high temperature bias, 1% concentration of single-vacancy or substitutional silicon defects, and a moderate partition of the pristine and defected regions. TR ratio of 80% is fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nano Research

سال: 2022

ISSN: ['1998-0000', '1998-0124']

DOI: https://doi.org/10.1007/s12274-022-4410-7